Forcing positive partition relations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forcing Positive Partition Relations

We show how to force two strong positive partition relations on u, and use them in considering several well-known open problems. In [32] Sierpiñski proved that the well-known Ramsey Theorem [27] does not generalize to the first uncountable cardinal by constructing a partition [ío,]2 = KQ U Kx with no uncountable homogeneous sets. Sierpinski's partition has been analyzed in several directions. O...

متن کامل

Forcing Many Positive Polarized Partition Relations Between A Cardinal and Its Powerset

A fairly quotable special, but still representative, case of our main result is that for 2 ≤ n < ω, there is a natural numberm(n) such that, the following holds. Assume GCH: If λ < μ are regular, there is a cofinality preserving forcing extension in which 2 = μ and, for all σ < λ ≤ κ < η such that η(+m(n)−1) ≤ μ, ((η)σ)→ ((κ)σ) (1)n η . This generalizes results of [3], Section 1, and the forcin...

متن کامل

Weak Partition Relations

The partition relation Ri-*0*i)ï,a, which was known to contradict the continuum hypothesis [1], is disproved without this hypothesis. For cardinals k^.co and X>1, let P{k, X) be the following partition relation: For any mapping F of the set [k]2 of unordered pairs of elements of k into X, there is a set B<=,k, of cardinality \B\ = k, such that the image of [B]2 under F is not all of X. Such a s...

متن کامل

Partition Relations via Ideal Products

We analyze how a simple splitting condition relating an ideal with a linear order allows the construction of certain embeddings of the rationals into the order. We extract as consequences proofs of some well known partition relations, including the Baumgartner-Hajnal theorem (φ → (ω)ω implies φ → (α)2 for all countable ordinals α) for uncountable orders φ not containing ω1, the result of Erdős-...

متن کامل

Rothberger's Property and Partition Relations

Let X be an infinite but separable metric space. An open cover U of X is said to be large if, for each x ∈ X the set {U ∈ U : x ∈ U} is infinite. The symbol Λ denotes the collection of large open covers of X. An open cover U of X is said to be an ω–cover if for each finite subset F of X there is a U ∈ U such that F ⊆ U , and X is not a member of U . X is said to have Rothberger’s property if th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1983

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1983-0716846-0